

Caloric value of fatty acidsDietary triglycerides and lipases

•Lipoproteins (overview)

•Fatty acid β-oxidation

*activation

*transport to mitochondrial matrix

*Four-reaction pathway and repeated cycles

 β -oxidation of fatty acids with odd number of carbons

 $*\beta$ -oxidation of unsaturated fatty acids

*regulation of β -oxidation

*β-oxidation in peroxisomes

•Ketone bodies

•Energy calculations for complete oxidation of fatty acids

Fuel Reserves and Energy Needs

- An average human has the following fuel reserves:
 - ~1600 kcal as glycogen in liver and muscle
 - ~24,000 kcal as protein
 - ~130,000 kcal as fat
- Typically, humans need ~ 2000-2500 kcal/day
- Thus, fat reserves will last for ~2 months
- Average body weight is ~ 160 lb
- Fat weight is ~ 20 % (~ 32 lb)
- Same amount of energy stored as hydrated glycogen would weigh ~ 220 lb.

- Fasting: the first source of energy is stored glycogen.
- Starvation: glycogen stores depleted within 24 hours.
- Brain needs glucose as fuel. Two sources:
 - Proteins \rightarrow Amino acids \rightarrow glucose.
 - Triglycerides \rightarrow Glycerol \rightarrow glucose.
 - No glucose from fatty acids (PDH is irreversible).
- Prolonged starvation:
 - Proteins preserved for muscle activity.
 - Fatty acids converted to ketone bodies.
 - Brain fuel shifted to ketone bodies.

CHEM464 / Medh, J.D. Fatty Acid Catabolism

Digestion of Triglycerides

- TG are digested in the small intestine
- Mixed with bile salts secreted by gall bladder and dispersed into micelles.
- Lipids in micelles are accessible to pancreatic enzymes.
- Pancreatic lipase forms MAG and FFA.
- MAG and FFA are absorbed by mucosal cells lining the small intestine.
- Inside the cells, MAG and FFA are condensed back to TG.
- Intestinal cells assemble TG into chylomicrons.
- CM are released into the blood for transportation to all parts of the body.

Overview of Lipoproteins (section 26.3.1 in Stryer)

- Free fatty acids have detergent properties in solution. A protein, serum albumin, transports fatty acids in the blood. TG are transported on lipoproteins.
- Lipoproteins are classified based on their **density**, which is determined by the **lipid:protein ratio**.
- **Chylomicrons** (CM): Dietary lipids are packaged into particles called Chylomicrons. They are the largest lipoproteins and also the least dense. They have the highest lipid: protein

Fatty Acids

- FA are the direct source of energy from lipids.
- FA are oxidized by a process called β -oxidation.
- When excess fats or calories are consumed in the diet, they are condensed into triglycerides.
- TG are stored in specialized fat-storage cells called adipocytes.
- Adipose tissue accumulates subcutaneously and in different body cavities of obese people.
- Liposuction removes this adipose tissue.

Sources of Fatty Acids

- 1. Dietary lipids processed by the intestinal cells
- 2. Newly synthesized lipids, mostly by the liver
- 3. Lipids mobilized from adipocyte stores.

Mobilization of Adipose Fatty Acids

- During fasting or starvation, stored fuel needs to be utilized.
- the body secretes hormones such as epinephrine and glucagon.
- These hormones release the second messenger cAMP which activate hormone-sensitive lipase.
- HSL hydrolyzes stored TG to release FA.
- The mobilized fatty acids are released into the bloodstream where they associate with albumin and cirulate to various tissues in need of fuel.

Fatty Acid Catabolism Most naturally occurring fatty acids have an even number of carbon atoms. The pathway for catabolism of fatty acids is referred to as the β-oxidation pathway, because oxidation occurs at the β-carbon (C-3). The first step of β-oxidation is activation of a fatty acid to a fatty acyl-CoA in the cytosol by enzyme on outer mitochondrial membrane. Enzymes of the β-Oxidation Pathway are in the mitochondrial matrix. Fatty acyl-CoA formed in the cytosol is transported across the inner mitochondrial membrane by carnitine.

CHEM464 / Medh, J.D. Fatty Acid Catabolism

Import of FA into Mitochondria

- Fatty acyl CoA entry into mitochondrial matrix: 3-steps
- 1. Fatty acyl group transferred from CoA to -OH of carnitine by carnitine acyltransferase I in the cytosol (transesterification)
- 2. Fatty acyl-carnitine enters matrix by facilitated diffusion through a specific transporter in inner mitochondrial membrane. This is called the acyl carnitine/carnitine transporter or the carnitine translocase.
- 3. In matrix, acyl group is transferred to mitochondrial CoA (second transesterification) by carnitine acyltransferase II
- There are two separate pools of CoASH: a cytosolic pool is used for FA biosynthesis; mitochondrial pool used for FA (also aa and pyruvate) degradation.
- Entry of acyl-CoA into mitochondrial matrix is a rate-limiting step of β-oxidation.

CHEM464 / Medh, J.D. Fatty Acid Catabolism

<u>Reactions of β-oxidation</u>
 Dehydrogenation of fatty acyl CoA to produce a <i>trans</i> double bond between the α and β carbons (or C-2 & C-3). the product is trans-Δ²-enoyl-CoA reaction catalyzed by acyl CoA dehydrogenase. the electron acceptor is FAD
 the reaction is analogous to succinate dehydrogenase Addition of water across double bond of trans-Δ²-enoyl-CoA. reaction catalyzed by enoyl-CoA hydratase product: L-β-hydroxyacyl CoA (3-hydroxyacyl CoA) reaction analogous to fumarase
 Dehydrogenation of L-β-hydroxyacyl CoA. product is to β-ketoacyl-CoA. enzyme: β-hydroxyacyl CoA dehydrogenase cofactor: NAD reduced to NADH + H⁺ reaction analogous to malate dehydrogenase

<u>Pathway</u>	ATP	NADH	<u>FAD</u>	TOTAL ATP
b-oxidation	0	7	7	
TCA	8	24	8	
	6	31	15	
ATP Harvested	6	77.5	22.5	106

Fatty Acids with Double Bonds

Most double bonds of naturally occurring fatty acids have cis configuration. As carbons are removed 2 at a time, a double bond may end up in the wrong configuration or wrong position for the action of Enoyl-CoA Hydratase.

<u>Monounsaturated FA</u>: The enzyme Enoyl-CoA Isomerase converts the cis- Δ^3 double bond to a trans- Δ^2 double bond.

<u>Polyunsaturated FA</u>: First, as above, Enoyl-CoA Isomerase converts the cis- Δ^3 double bond to a trans- Δ^2 double bond. Next, 2,4-Dienoyl-CoA Reductase converts the trans- Δ^2 , cis- Δ^4 intermediate to trans- Δ^3 . Then Enoyl CoA Isomerase converts the trans- Δ^3 double bond to trans- Δ^2 .

β-oxidation in Peroxisomes

- Preferred FA are 20- to 26-chain and branched FA. (once chains are shortened they can be exported to mitochondria)
- Carnitine derivative not required for entry into peroxisome.
- FADH₂ is reoxidized by passing its electrons directly to O₂ forming hydrogen peroxide (H₂O₂).
- H₂O₂ is highly toxic and is immediately broken down to H₂O and O₂ by catalase.
- The NADH formed by β -hydroxyacyl CoA DH cannot be reoxidized in peroxisomes and has to be exported to the cytosol for oxidation.
- TCA cycle enzymes are absent. Acetyl CoA formed by peroxisomal β-oxidation is transported to the cytosol, some of it may enter the mitochondria and join the Kreb's Cycle

Regulation of Fatty Acid Oxidation

FA metabolism is under hormonal regulation. When fuel levels are low, Epinephrine and Glucagon stimulate mobilization of fat and glycogen reserves. Insulin, which is secreted during the fed-state, is anti-lipolytic (it inhibits β -oxidation).

The transport of FA into mitochondria is allosterically regulated. This is the rate-limiting step in β -oxidation. Carnitine Palmitoyl Transferases I and II are inhibited by **malonyl-CoA**, an intermediate of fatty acid synthesis. Thus fatty acid oxidation is diminished under conditions favoring fatty acid synthesis.

The two final steps in the β -oxidation cycle are also regulated. 3-hydroxyacyl-SCoA dehydrogenase is inhibited by NADH. Thiolase is regulated by feed-back inhibition by acetyl CoA.

Fate of excess acetyl CoA

- Entry of acetyl CoA into citric acid cycle depends on availability of oxaloacetate (for formation of citrate)
- Oxaloacetate is formed by pyruvate carboxylase from pyruvate (glycolysis product). Its availability is dependent on glycolysis and carbohydrate supply.
- Oxaloacetate is depleted during gluconeogenesis.
- If organism has a high intake of fat, low intake of carbohydrate, or is unable to metabolize glucose (diabetes), or during fasting/starvation, [acetyl CoA] >> [oxaloacetate]
- Acetyl CoA is diverted to formation of Ketone Bodies.
- Ketone Bodies are formed when capacity of TCA cycle is exceeded.

Ketone Bodies Are Formed During Diabetes

- During diabetes or starvation:
- Glucose cannot enter cells and is not available for oxidation
- Gluconeogenesis depletes intermediates of the TCA cycle; TCA cycle pauses.
- FA biosynthesis is inhibited (activated by insulin)
- Malonyl CoA (first step of FA synthesis) is not formed.
- β-oxidation is not inhibited (at carnitine acyl transferase).
- Insulin is anti-lipolytic; in its absence FA oxidation continues unchecked.
- Acetyl CoA is in excess and ketones are formed
- Uncontrolled diabetes results in diabetic ketoacidocis. The decrease in blood pH because impairs several tissue functions and can be fatal.